

OVERVIEW

PROJECT

To use Angular to build a front-client for an API called myFlix that I had created earlier for
CareerFoundry’s Full Stack Web Development course. The myFlix API had been designed to
provide users with information about movies, movie directors and genres, allow them to
establish profiles and select movies as favorites, and update their information.

CONTEXT

I decided in 2020 to kickstart a new career for myself as a web developer by enrolling in CF’s
Full Stack Web Development course. This project was the crowning achievement of the
curriculum, which I produced in order to expand my skill base to include Angular after
completing several projects with React.

TIMEFRAME 1 month

ROLE Full Stack Web Developer

SUPPORTERS (thank you!)

- Alfredo Salazar Vélez (CF mentor)
- Jay Quach (CF tutor)

TOOLS

- Angular
- JavaScript

THE PROCESS

1. SETTING THINGS UP

The learning curve for Angular is very steep!

Having just completed several projects using
React, it was disorienting to understand how
the different elements of an Angular project
(modules, templates, injectors, metadata,
data binding, services) work together:

(image source: https://angular.io/guide/architecture)

My approach was to work very carefully through the process of
setting up just a basic Angular project, checking as I went along
how changes in one part of the project would affect its
behavior elsewhere. I learned a lot at this stage, especially
about how Angular components and templates interact.

https://angular.io/guide/architecture

2. CREATING THE WELCOME SCREEN

Problem

After implementing the logic for making
API calls in a service file, I hit a snag
trying to create an Angular form for
users to register and login. My code
generated errors that were very hard to
interpret. Once I even got an HTTP 201
“error,” even though 201 is a success
code, indicating that a resource has
been created correctly!

Solution

I finally figured out what was going
wrong.

Angular receives API information and
expects that information in the form of
an object. But my API was also sending a
success message in the form of a
string—

“Your account has been
successfully created!”

—in addition to the important data. I
had to go back into my API code to
remove the string from the response.

Lesson learned

Check the data type of the info coming
from your API!

3. BUILDING THE MAIN VIEW

The final step was to set up the main view of
the Angular client, where users can browse
through movies, check out and update their
profiles, and view and edit their favorite lists.

To help users see which movies were their favorites, I decided
to use Angular’s built-in structural *ngIf directive. The *ngIf
directive adds or removes an HTML element to the DOM
depending on whether a specified condition obtains.

So this is what I wrote:

The idea here was simple: if the value of the
currentUsersFaves variable included the specified movie, then
a filled-in heart would display; if not, a heart border would
display instead, like so—

Problem

But it didn’t work! In fact, this code made my application behave very erratically. Either
the wrong heart icon would appear (showing favorites for non-favorites, or vice versa),
or else it would just not appear at all. And depending on how I tweaked the code, my
application would try to check the favorite status of each movie dozens of times!

Solution

It turned out there were two things I needed to do—

(1) First, I linked my *ngIf
directive to the result of a
function, itIsAFave, that
returns a Boolean value
saying whether the given
movie is a favorite or not.

(2) Second, I also needed
to rewrite the functions
that run when the main
page loads, especially
the function for setting
the currentUsersFaves
variable, which then had
to be linked to the icon
html element.

Lesson learned

 *ngIf works best when linked to a function that returns a Boolean!

THE RESULT
 PROJECT OUTCOMES

The final product fulfilled all the requirements successfully. I created a well-
constructed, bug-free Angular client for accessing my myFlix API.

A STRONGER DEVELOPER

I became a much stronger developer from this experience. I now have a solid foundation
for working with Angular, and my debugging skills got some good practice working on
*ngIf.

But my biggest surprise was the problem I ran into with the success message string from
my API, since I had earlier created a React client for the same API without any such
difficulty. I learned from this that because of how picky Angular is about data types, it
pays to be careful not only about the data types within an Angular project, but also the
data types that Angular receives from external sources such as an API. I will keep this in
mind in future projects, not only when I am working with Angular, but also when I am
creating APIs that might be accessed by Angular clients.

